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Abstract. A string is called kth power-free, if it does not have x* as a nonempty substring. For
all nonnegative rational numbers k, kth power-free strings and k th power-free homomorphisms
are investigated and the shortest uniformly growing square-free (k =2) and cube-free (k =3)
homomorphisms mapping into least alphabets with three and two letters are introduced. It is
shown that there exist exponentially many square-free and cube-free strings of each length over
these alphabets. Sharpening the kth power-freeness to the repetitive threshold RT(n) of n letter
alphabets, we provide arguments for the nonexistence of various RT(n)th power-free
homomorphisms.

1. Introduction

Since the work of Thue [9, 10] at the beginning of this century there have been
many investigations on the construction of strings without repetitions. The simplest
such strings are the square-free and the cube-free strings, which do not have x?
and x° as a nonempty substring. Curiously the English words square-free and
repetitive each have a repetition and they are examples of non square-free strings,
such as the mathematical constants e=2.718281828..., V3=
1.732050808 ..., and w=3.14159265 3589 7932 3846 2643 3 ... (see [7]). The
existence of square-free strings of arbitrary length over three letter alphabets and
of cube-free strings over two letter alphabets has originally been discovered by
Thue [9, 10]. This is in fact surprising and a remarkable combinatorial property of
strings. Square-free strings have been applied in various situations, e.g., in unending
chess, in group theory, and in formal language theory. Details can be found in [8)]
and the references given there.

In this paper we generalize the notion of a power of a string to rational powers
and strict rational powers. Square-free and cube-free strings now are special cases
with k =2 and k = 3, and strongly cube-free or overlap-free strings are weakly 2nd
power-free strings. This generalization is a real simplification over existing notions.
Furthermore, it allows to define partial repetitions of strings and repetitive thresh-
olds of alphabets.
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Particular emphasis is laid upon the sets of square-free and cube-free strings
over least alphabets. It is easy to see that there are no square-free strings of length
four over a two letter alphabet and no cube-free strings of length four over a single
letter alphabet. However, there are infinite such strings over alphabets with three
resp. two letters. Here we improve these results and show that for every positive
integer n there are exponentially many square-free strings of length n over a three
letter alphabet and exponentially many cube-free strings of length n over a two
letter alphabet. Hence, the sets of square-free and cube-free strings are either
trivial or exponentially dense.

For the proofs of these results we use square-free and cube-free homomorphisms
from an arbitrary alphabet into the sets of strings over a three and a two letter
alphabet, respectively. We introduce the shortest uniformly growing square-free
homomorphisms from alphabets up to six letters into the set of strings over a three
letter alphabet and the shortest cube-free homomorphisms from alphabets up to
four letters into the set of strings over a two letter alphabet. Much longer and not
uniformly growing homomorphisms of this kind have been introduced in [1]. We
also sharpen conditions on uniformly growing homomorphisms to be square-free
to the very optimum. This improves results by Bean et al. [1], Berstel [2] and Thue
[9, 10].

Finally, the repetitive threshold RT(rn) of n letter alphabets X, is defined. RT(n)
is the least k such that there are infinitely many weakly kth power-free strings
over X,. This continues the work of Déjean [3]. We establish certain properties of
weakly RT(n)th power-free homomorphisms. In particular, we show the non-
existence of nontrivial such homomorphisms from £¥,, into ¥, and from X7 into
3* if RT(n) <3. These results imply that new techniques are necessary to determine
the unknown values of the repetitive threshold RT(n) for n =4, and they show
that our proof techniques for establishing lower bounds on the numbers of kth
power-free strings fail here.

2. kth power-free strings

For all nonnegative rational numbers k we define kth power-free strings and
kth power-free homomorphisms and establish some basic properties.

For a string w over an alphabet X let |w| denote the length of w. A string x is
a prefix (substring, suffix) of w, if w =xy (w = uxv, w = yx) for strings «, v and -
For an integer n define the nth power of w by w’=A and w" =ww" ', where A
denotes the empty string. This notion is generalized to rational exponents.

Definition. Let w be a string over 5. Let k be a nonnegative rational number and
let n =k be an integer.Then the kth power (strict kth power) of w is the least prefix
x of w” such that |x|=k - |w| (|x|>k -|w]).
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For example, aba is the 3th power of ab, and abab is the strict 3th power of ab.
If w is a nonempty string and a is the first letter of w, then wa is the strict first
power of w.

In the following we shall see that the use of rational and strict rational powers
of strings both generalizes and simplifies existing notions.

Definition. A (finite or infinite) string w is kth power-free (weakly kth power-free),
if w does not have the (strict) kth power of a non-empty string as a substring, i.e.,
w # ux*v, where k is a nonnegative rational number. In accordance with the
commonly used terminology, second and third power-free strings are called square-
free and cube-free, respectively.

Let FREEx(<k), FREE:(=k) and FREEx(=k) denote the sets of kth power-free
strings, weakly kth power-free strings and exactly kth power-free strings over the
alphabet X, respectively, where FREEx(=k)=FREE:(<k)—FREEx(<k). When
it is appropriate we replace the subscript X by its cardinality. Thus FREE;(<2),
e.g., denotes the set of square-free or second power-free strings over any fixed
three letter alphabet.

The languages FREEx(<k) and FREEx(=<k) consists of all strings over X, which
have at most mth powers, where m <k and m <k, respectively. Every string w in
FREE;(=k) has a kth power, i.e., w = ux*v, but w does not have an mth power
with m > k. Obviously, every kth power-free string is weakly kth power-free, and
every weakly k th power-free string is m th power-free, if kK <m. Thus FREEx(<k) <
FREE:(=k)<cFREEx(<m).

It is easy to see that FREE,(=k) contains only strings up to length [k +1], and
that FREE;(2) contains seven strings up to length three. To the contrary, Thue [9]
has discovered the existence of infinite square-free strings over three letter alphabets
and of infinite cube-free strings over two letter alphabets.

One of the aims pursued in this paper is to count square-free strings over a three
letter alphabet and cube-free strings over a two letter alphabet, i.e., to establish
lower and upper bounds on the numbers of such strings of length n for every n.
A trivial upper bound stems from the number of all strings, which grows exponen-
tially in the cardinality of the alphabet. For our proofs of exponential lower bounds
we make use of kth power-free homomorphisms, which are the most useful tools
in the theory of kth power-free strings.

A homomorphism h is a mapping between free monoids £* and 4* with h(xy) =
h(x)h(y) for every x, y € £*. A homomorphism h is length uniform, if |h(a)| = |h (b)|
for every a, b€ X. h is growing, if h(a)# A for every a € X and |h(a)|>1 for some
a € X, and h is uniformly growing, if h is length uniform and growing, i.e., |h(a)| =t >
1 foreveryae 3.

A homomorphism is compatible with the product of strings, but it is not compat-
ible with rational powers of strings. Hence, it may occur that h(w)* # h(w*). As
an example consider k =3, h(a)=a, h(b)=bcd, x =ab and y = ba. Then h(x*)=
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h(aba)=abcda, h(x)* =abcd* = abcdab, h(y*)=h(bab)=bcdabcd, and h(y)* =
beda® = bedabe. Thus the repetitive power of a string may increase or decrease
under a homomorphism.

Definition. A homomorphism h is (weakly) kth power-free, if h(FREEx(<k)) <
FREE, (<k) (h(FREEs(<k)) cFREE(<k)).

Every (weakly) kth power-free homomorphism maps (weakly) kth power-free
strings into such strings. It may however occur that a (weakly) kth power-free
homomorphism is not (weakly) mth power-free, where m >k or m <k. Examples
are easy to find due to the incompatibility mentioned above. However, (weakly)
kth power-free homomorphisms can be composed without harm.

Theorem 1. If hy and h, are (weakly) kth power-free homomorphisms, then so is
their composition hy + h,.

This property provides us with a powerful and elegant tool for defining infinite
(weakly) kth power-free strings, and we (as others before) make use thereof. In
particular, if & is growing and h(a)=ax for a letter @ and a nonempty string x,
then the limit of the sequence /" (a)=h(h" '(a)) is an infinite (weakly)k th power-
free string, if / is such a homomorphism. Furthermore, Thue [10], Bean et al. [1]
and Berstel [2] have established conditions which guarantee that a homomorphism
is kth power-free. These conditions say that it is sufficient to check the kth
power-freeness of a homomorphism on all kth power-free strings of length & +1
and either a certain substring property of the homomorphic images of the letters
(see[1, 10]) or, for square-free homomorphisms, the square-freeness on all square-
free strings of length 2+2p(h), where p(h)=max{h(a)|a € X}/min{h(a)|a €}
(see [2]). These conditions are too restrictive for uniformly growing square-free
homomorphisms and optimal ones are established by Theorem 2.

Theorem 2. Let h be a uniformly growing homomorphism with domain X*. Then h
is square-free if and only if h(w) is square-free for every square-free string w of length
three.

Proof. The proof is given for arbitrary homomorphisms and we shall point out,
where the length uniformity is needed and where it simplifies the proof.

Let k& be square-free on every square-free string w with |w|=3. Then h(a)#A
for every letter a, and h(a) is not a prefix (suffix) of h(b) for every a, b € X with
a # b; otherwise, h(bab) has a square.

Suppose that h(w) has asquare and that /1 (w) has minimal length. Then h(w) = xttz'.
By the minimality, xx'=h(a) and zz'=h(c) for some letters a and c, and by the
hypothesis |w|=4, so that w =aw’c. From the length-uniformity of & we obtain
that w'=ubv with beZX, h(b)=yy', and x'h(u)y =y'h(v)z =t. For arbitrary
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homomorphsims w' does not necessarily have this form. Note that the length-
uniformity of & will not be used elsewhere.

If [x'|=y’|, then x"=y’, h(t)=h(v), u =v and y =z. Now a =b or b =, since
a #b #c implies h(abc)=xx"yx'yz'. Hence w = bubuc or w = aubub, and w has a
square. Let |x'| # |y’| and assume |x'| > |y’|. The case |x'| <|y'| is similar. Then x' = y'x"
with x"#A, and v = v'dv” with d € £, |h(v")|<|x"| and |h(v'd)|=|x"|. If h is length
uniform, then v'=A, which simplifies this analysis a bit. Now h(d)=88"' and
h(a)=xy'h(v')8, where |8]| =[x"|—|h(v')| > 0. Thus & (ad) has a square, which implies
that a =d. Hence, h(a) begins and ends with § and 2 - || <|h(a)|, i.e., h(a)=5B6
with 8 # A ; otherwise, /1(a) has a square by results in [5, 6]. Furthermore, 8 is a
prefix of h(ub). Thus h(aub)=5B5By has a square, contradicting the minimality
of i(w). Hence, h is square-free.

It is easy to see that the homomorphism g with g(a) = ab, g(b)=cb and g(c) =cd
is square-free on all square-free strings of length one or two, but g is not square-free
on abe. Thus the bound three is optimal. [J

For non uniformly growing homomorphisms consider the homomorphism g from
Example 1.6 in [1], which maps a, b, ¢, d, e to ad, b, cdbadce, cdabdce, cdadbce,
respectively. g is square-free for all square-free strings of length three. However,
glabac) = adbadcdbadce has the square (dbadc)®. Here, w = abac factors into auc
with g(a)=xx"and g(c) = yx'h(u)yz. Thus g(c) forces the square and prevents the
factorization of w into aubvc with the properties as in Theorem 2.

Note that the substring property of Thue and Bean et al. [10, 1] is too restrictive.
This property guarantees the square-freeness of every homomorphism. It requires
that /si(a) is not a substring of /i(b) for letters a, b with a # b, which means that
the homomorphic image of each letter can uniquely be determined in a string.
However, the homomorphism i with /i(a) = a and h(b) = bac, e.g., is kth power-free
for every k > 3, and h violates the substring property from above, as does the ‘“Thue’
homomorphism, which is of interest for its own right.

Theorem 3. The ‘Thue’ homomorphism h, with h,(a)=ab and h,(b)=ba is the

shortest uniformly growing (weakly) kth power-free homomorphism for every k >2
(k =2).

Proof. Let k =2+p +r with 0<r < 1. Suppose that /1;(w) has the kth power of a
nonempty string as a substring and is of minimal length. Then A;(w)=cv>*"v'd
with ¢, d e{a,b}u{A}. If |v| is odd, then there exists no x such that A,(x) = cove,
Where either c =e =A orc, e €{a, b} and e is the first letter of v. Hence, |v| is even.
Then ¢ =A by the minimality of h,(w) and w=x>""y, where x=h;'(v) and
y=hi"(v"),if|[v"]iseven,and y = h; ' (v'd), if |v"| is odd. Theny = x" and w =y 2tey
has a k th power, which is a strict kth power, if 4,(w) has a strict k th power. Hence,
hy is (weakly) kth power-free. []
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We close this section with examples of two particular weakly kth power-free
homomorphisms, which are optimal in a sense made clear below.

Example 1. Let A (a)=ab and h,(b) = ba. h, is called the ‘Thue' homomorphism,
who has studied the string obtained by iterating h,. See [8-10]. In particular, &,
is weakly square-free and defines an infinite weakly square-free string over {a, b} by
iteration. Notice that there are no growing square-free homomorphisms mapping
into the set of strings over two letter alphabets, since this set is finite.

Example 2. Let
h»(a) = abcacbecabcbacbeacba,
h,(b) = becabacabcachacabach,
ha(c) = cabcbabcabacbabcbac.

The homomorphism £, is due to Déjean [3]. She has shown that h, is weakly Ith
power-free, and that jth power-free strings over three letter alphabets are of length
at most 38. Thus there exists an infinite (or infinitely many) weakly ith power-free
string over a three letter alphabet, but there exist no growing ith power-free
homomorphisms over three letter alphabets. Under various perspectives h, is an
extension of &, to three letter alphabets; details are discussed in Section 4.

3. Density of square-free and cube-free sets of strings

Our first investigation and experience with square-free strings was the attempt
of computing all initial square-free strings over {a, b, ¢} and listing these strings as
the paths of a tree with root A. See [10]. This representation immediately asks for
bounds on the width of the tree so obtained, which equals the number of square-free
strings of length n.

Theorem 4. For every alphabet X there exists a uniformly growing square-free
homomorphism h from X* into {a, b, c}*.

Proof. Let X ={a,, as, ..., a,} and define homomorphisms h, ..., he by the fol-
lowing table:

h| -'IIJ ’I] ’I_q I!{,
a; ab ab abacbabcbhac abacabcacbabebache abacabcacbabcbacabache
asinl ac abacbcacbac abacabcacbacabache abacabcacbecabcbabeache
as abcbabcache abacabcacbcabcbabe abacabcbabcacbhabcbache
a, abacabcbacabacbabe abacabebabcacbeabebabe
as abacabchachcachabe abacabcbacabacbabeache
ag abacabcbacheachabeache
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Each of these homomorphisms is square-free on all square-free strings of length
three, and thus square-free by Theorem 2.
If ¥ has more than six letters, then define copies hg’ of he from {ag;s, . . ., ae}*
into {asi 2, asi_1, ay}*, identifying @ and as;_», b and as;_1, and ¢ and as; under
6 - Suppose that 3 has 3 - 2” letters and let r =2”"'. For homomorphisms g1, 8
from X7 into AF with $,n3,=4,n4,=0 define the parallel composition g, X g,
from (X, UZX;)* into (4, Ud,)* by (g1 X ga2)(a) =gi(a), if ae X, and (g; X g2)(a) =
ga(a), if a € X,. Obviously, g, X g, is a square-free homomorphism, if g, and g, are
square-free. Hence, hy' x---xhY is a square-free homomorphism from
{ay,...,ae)* into {a,...,as}*. Now the repeated composition (of depth p)
he'o...o(hg’ %+ +xhy) is a square-free homomorphism from X* into
{ay,az as}*. O

Remark. It should be noted that the homomorphisms from Theorem 4 are the
shortest uniformly growing square-free homomorphisms from alphabets up to six
letters into {a, b, c}*. Furthermore, for n <3, every uniformly growing square-free
homomorphism from {a,,...,a,}* into {a, b, c}* equals h,, hy, h3 or h3 up to a
renaming of the letters and a reversal of the strings, where hj(a1) = abcacbcabac,
h’(az) = abcbacabach, and h'(as) = abebacbeach.

The fact that these homomorphisms are the shortest square-free homomorphisms
of their kind was checked by a PL/1 computer program, which was run on the
IBM 370-165 of the RHRZ Bonn, and consumed 30 min CPU time.

The program first generated all square-free strings of length n over {a, b, c}.
Then it exhaustively searched all k-tuples of these strings, which are compatible
with each other according to the conditions of Theorem 2. These strings can be
used as the homomorphic images of k letters.

The existence of square-free homomorphisms, which properly reduce arbitrary
alphabets to three letter alphabets, can be used to show that the set of square-free
strings over a three (and more) letter alphabet is exponentially dense.

Definition. For a language L and n =0 let [1,(n) denote the number of strings of
length n in L. 11, is called the density function of L.

Theorem 5. The set of square-free strings over a three letter alphabet is exponentially
dense, i.e., there exist constants ¢y, c2> 1 such that for every n =2

6- Crll = ”r-'m-tl-:w-:: (n)=6- Cg-

Proof. There are 1172 square-free strings of length 24 over {a, b, ¢} beginning
With ab. Hence, each square-free string uv with [v| =2 has at most 1172 square-free
extensions uva with |a|=22. Since there are 6 square-free strings of length two,
Mepgg, <2 (n) <6 - ¢4 %, where ¢, =1172"*2<1.38. To establish the lower bound
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let w be a square-free string of length />0 over {a, b, ¢}, which exists by Example
1. Define a finite substitution by 7(a)={a, a'}, 7(b) ={b, b'} and 7(c) ={c, ¢'}. Then
each string x € r{w}is asquare-free stringover {a, a’, b, b', ¢, ¢’} and he(x) € {a, b, c}*
is a square-free string of length 22/, IT.,.\([) = 2'. For every yy, y2€ t{w} with y, # y2,
he(y1) and he(y2) have different prefixes of length m with 22(/ —1)<m < 22[. This
follows from the fact that he is injective, which is a consequence of the square-
freeness. Hence, for every n > 2 there exist at least 6 - 2} square-free strings of length
n in{a, b, c}*, where [ = [n/22]. Thus [Teree,<2 (1) =622 =6-1.032". O

Forn =1, 2, ..., 24 that actual numbers of square-free strings over {a, b, c} are
as follows: 3, 6, 12, 18, 30, 42, 60, 78, 108, 144; 204, 264, 342, 456, 618, 798,
1044, 1392, 1830, 2388; 3180, 4146, 5418, 7032. This sequence suggests that the
density function of the set of square-free strings over a three letter alphabet grows
at least as 1.3", which means that our upper bound is better than our lower bound.
Important is that both bounds are exponential.

Notice that the iteration of a single square-free homomorphism defines only
sparse languages of density O(n - log n) as it has been shown in [4].

For cube-free strings over two letter alphabets we proceed in a similar way,
improving again a result by Bean et al. [1].

Theorem 6. For every alphabet X there exists a uniformly growing cube-free
homomorphism h from 3* into {a, b}*.

Proof. Let ¥ ={a,, as, ..., a,} and define homomorphisms k., ..., hs by the table
‘ fl], f’l: h_‘; J‘!.;
a, ‘ ab ab aababb aabaabbab
as ba aabbab aababaabb
as ‘ abbaab aabbababb
a; | abbaababb

Obviously, h, is cube-free, and h; is cube-free by Theorem 3. The homomorphism
hs is cube-free on all cube-free strings of length four, but /i3 does not satisfy the
‘substring property’ from [1], which requires that i (ab) = uh(c)v implies that u = A
and a =c, or v =A and b =c for all letters a, b, c. Here the homomorphic images
of the letters are of the form xy, yx and xz, and yx is a substring of xyxz. However,
each of the strings x, y, z of length three is unique, and the prefix aabb of hs(as)
serves as a separation marker so that its occurrence in a string /;(w) uniquely
determines the occurrence of a» in w.

Suppose that hs(w) = puuuq has a cube, and that w is of minimal length. If aabb
occurs in u, then w = aua->u-Bu axu-Bu axury with a, B, vy € {a,, az, aspu{A }, and
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a simple case analysis as in Theorem 2 shows a =8 or y =, such that w has a
cube. Conversely, if aabb does not occur in u, then a, occurs at most as the first
or the last letter of w. By the uniqueness of x,y and z, w =ajvasvasvaz, w =
ayvajvava; or w =vovv with v €{a,, as}*. In each case, w has a cube. Hence, h;
is cube-free.

The homomorphism &, is cube-free on all cube-free strings of length four. But
h4 does not satisfy the ‘“‘substring property”, since h4(a3;) occurs as a substring of
hs(a,as). However, aabaa, ababa and aababb serve as separation markers and
uniquely identify h4(a,), ha(as), and hs(as), respectively. Now an analysis as above
for h; shows that h, is a cube-free homomorphism.

If the alphabet contains more than four letters, then repeated compositions of
(extensions of) the homomorphism h4 as. in Theorem 4 define a cube-free
homomorphism from X* into {a, b}*. O

Remark. It should be noted that the homomorphisms from Theorem 6 are the
shortest uniformly growing cube-free homomorphisms from alphabets up to four
letters into two letter alphabets. Furthermore, the homomorphisms 1, h,, and h;,
h3 and h3 are unique up to a renaming of the letters or a reversal of the strings,
where h’(a,) = aabbab, h’(a,)=abbaab, h’(as)=babaab, and hi(a,)=aabbab,
h%(a,) = baabab, h'(as) = babaab.

Using the fact that there are 1251 cube-free strings of length 18 in {a, }* which
begin with a and the homomorphism A, from Theorem 6 we obtain that the set
of cube-free strings over two letter alphabets is exponentially dense.

Theorem 7. The set of cube-free strings over a two letter alphabet is exponentially
dense, i.e., there exist constants d,, d, such that for every n >0

2 - di <IIgregy<3 (1) <2 - d3.
Here, d,=2"°=1.08 and d,<1251""7 <1.522.

4. Repetitive thresholds

From the aforesaid we know that there exist infinitely many square-free strings
over a three letter alphabet and infinitely many cube-free strings over a two letter
alphabet. However, if the size of the alphabets is reduced by one or if the repetitive
power is decreased e.g., to 3, then the sets of kth power-free strings are finite. Thus
there is the problem of determining the least repetitive power k such that for every
n letter alphabet X, FREEs(<k) is finite, and FREEx(=<k) is infinite, and of
establishing lower bounds on the density of FREEx(<k). We cannot solve these
problems here, since our techniques from above fail.
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Definition. For every n =1 the repetitive threshold RT(n) is the rational number
k such that for every n letter alphabet £ FREEx(<k) is finite and FREEx(<k) is
infinite.

Since FREEx(<RT(n)) is finite for every n letter alphabet X there is an upper
bound on the length of the strings in FREEx(<RT(n)). Hence the set of exactly
RT(n)th power-free strings FREEs(=RT(n)) is infinite.

The notion of a repetitive threshold is due to Déjean [3]. Our definition is based
on powers of strings, whereas Déjean has considered the relationship between the
length of some strings « and v such that uvu is the kth power of uv for some k.
For alphabets up to three letters the repetitive thresholds are known.

Theorem 8.
RT(1)=o, RT()=2, RT(3)=4
and

1<RT(n +1)=RT(n) forevery positive integer n.

Proof. FREE(<k) contains [k +1] elements, which implies that RT(1)= 0.
FREE(.»(<2)={A, a, b, ab, ba, aba, bab}, whereas FREE,;)(=<2) is infinite, since
it contains the set of prefixes of the infinite sequence generated by the ‘Thue’
homomorphism from Example 1. Finally, FREE;(<J) contains 3196 strings of
length up to 38 as shown by Déjean [3], and her homomorphism from Example
2 is weakly jth power-free and defines an infinite weakly jth power-free string so
that FREE;[S%) is infinite. Finally, it is obvious that the sequence of repetitive
thresholds decreases, when the alphabets grow, and that RT(n)>1. [

Remark. For n =4 the repetitive thresholds are unknown. There is good evidence
that RT(4)=% and RT(n)=n/(n—1) for n=5, as proposed by Déjean [3].
FREE,(<2) is finite and consists of 236 345 strings of length up to 121, and every
string of length n +2 over a n letter alphabet has a n/(n — 1)th power, so that
FREE,(<n/(n—1)) is finite. Hence, one condition of a repetitive threshold is
satisfied by these values. However, we do not know whether they satisfy the second
condition, too, since infinite or infinitely many weakly kth power-free strings have
not yet been found in these cases. The following results show that new techniques
are needed to determine the repetitive thresholds.

Theorem 9. Let X and A be n letter alphabets and let h be a weakly RT(n)th
power-free homomorphism from X* into A*. Then w € FREEs(=RT(n)) implies
h(w)e FREE4(=RT(n)).

Proof. From RT(2)=2 we obtain w e FREEx(=2) if and only if w = uxxv. Then



kth power-free homomorphisms 79

h(w)e FREE(=2). Consider n = 3. Since RT(n) <} by Theorem 8,
FREE:x(=RT(n)) = {uxyxve X*||y|=1¢ - |x|, t=(2-RT(n))/(RT(n)—1)}.

Suppose that h(w)& FREE;(=RT(n)) for some w e FREEx(=RT(n)), i.e., h(w)e
FREE4(<RT(n)). Then |h(y)|>1 - |h(x)|, which implies that [i (a)| # [h (b)], # (y) <
t-#.(x), and #4(y)>r-#,4(y) for some letters a, b, c, deX, where #_.(y)
denotes the number of occurrences of ¢ in y. Consider w'=u'x'y'x'v'e
FREE:(=RT(n)), which is obtained from w = uxyxv by a renaming of the letters
such that |/ (x')| is maximal among all strings so obtained. Then ¢ « |h(x")| = |h(y")|>
t-|h(x)|—|h(y)|, which implies h(w')¢ FREEs(=<RT(n)), and h is not weakly
RT(n)th power-free. [J

From the proof of Theorem 9 we obtain that every weakly RT(n)th power-free
homomorphism is either length uniform or the letters are uniformly distributed in
each exactly RT(n)th power-free string wxyxv, such that #.(y)/#.(x)=
(2=RT(n))/(RT(n)—1) for all letters a and xyx e FREEx(=RT(n)).

Theorem 10. If RT(4)={ and RT(n)=n/(n—1) for n=5, then every weakly
RT(n)th power-free homomorphism over n letter alphabets 3 and A is length uniform
for every n =3.

Proof. Assume the contrary. Let a,beX with |h(a)|=max{|h(c)||c€ZX}, and
|h(b)| =min{|h(c)|lc € X}. Thus |h(a)|>|h(b)|. Now abcbabc e FREEs(=1), but
h(abcbabe)2 FREE s (=13), abcdbacbdcabed e FREEs(=12), but h(abcdbacbdcabed)
€FREE,(={), and for n=5, aa,...a, 1a1€ FREEs(=n/(n—1)), but
h(a,a,...a, 1a,)¢ FREEs(=n/(n—1)) witha,=a anda,=b. O

Another restriction on weakly RT(n)th power-free homomorphisms is the fol-
lowing;

Theorem 11. Let h be a weakly RT(n)th power-free homomorphism over n letter
alphabets X and A. If h(a) =cu and h(b) =dv(h(a)=uc, h(b)=vd) with a, b, c,d €
L, then a # b implies ¢ #d. Thus the beginning and the end of the homomorphic
images of different letters must be different.

Proof. Assume the contrary and let i(a)=cu and h(b)=cv witha #b. For n =2,
h(aab) = cucucv is not weakly 2nd power-free, and thus contradicts the assumption.
Consider n =3 and RT(n) < J. Since FREEs(=RT(n)) is infinite and invariant under
a renaming of the letters there exists xyxb € FREEx(=RT(n)) with |y|=t - x],
Where (=(2-RT(n))/(RT(n)—1). Now xyz e FREEs(=RT(n)), h(xyz)e
FREE,(=RT(n)), and y#bz, ie, y=az by renaming. Then h(xyxb)
€FREE,(<RT(n)), which contradicts the assumption that & is weakly RT(n)th
Power-free. [J
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As a consequence we obtain:

Theorem 12. There exists no weakly RT(n)th power-free homomorphism from X*
into A*, if X is an m letter alphabet, A is an n letter alphabet, and m > n.

Theorem 12 shows that the technique employed in Theorem 5 and in Theorem
7 cannot be used to show that there exist exponentially many weakly RT(n)th
power-free strings of each length. In fact, the density function of the set of weakly
square-free strings over two letter alphabets is not strictly increasing (it makes
some zig-zags; see n =24 —27) and seems to grow slower than 2", as the first 95
values of the density function may suggest.

2, 4, 6, 10, 14, 20, 24, 30, 36, 44, 48, 60, 60, 72, 82, 88, 96, 112, 120;
120, 136, 148, 164, 152, 154, 148, 162, 176, 190; 196, 210, 216, 224,
228, 248, 272, 284, 296, 300; 296, 320, 332, 356, 356, 376, 400, 416,
380, 382; 376, 382, 356, 374, 392, 410, 432, 458, 464, 486, 476, 498,
500, 522, 528, 540, 548, 568, 560, 592; 592, 620, 660, 688, 688, 722,
724, 740, 724, 724; 716, 748, 788, 824, 816, 856, 868, 880, 868, 912;
908, 960, 976, 1008, 1000.

If the repetitive threshold is less than 3, which is likely to be true for alphabets
with at least four letters, the situation is even worse.

Theorem 13. If RT(n)<3, then there exists no growing weakly RT(n)th power-free
homomorphism from X* into A*, where X and 4 are n letter alphabets.

Proof. Let & be a homomorphism from X* into 4* and assume n =4, since
RT(3)=1. By Theorem 11, h(a)=a(a)y(a)B(a) for each letter a, where a and 8
are renamings (permutations) of 4. Assume that i(a)=a,a;u with a,, a;€ X. From
Theorem 11 we obtain B(b)# a, for all b€ X with b #a and h(c)=va, for some
c€X. Thus h(ca)=vaa,a>u and h is not weakly RT(n)th power-free. [J

By Theorem 13 it is impossible to define an infinite weakly RT(n)th power-free
string using weakly RT(n)th power-free homomorphisms, if RT(n) < 3. Since RT(n)
is assumed to be less than 3 for n =4, this tool fails to work for determining the
values of the repetitive thresholds. Nevertheless, an infinite weakly RT(n )th power-
free string may be definable by the iteration of a homomorphism, which is weakly
RT(n)th power-free only on its sequence of strings of the form i'(w) for some
axiom w and all i =1, i.e., a weakly RT(n)th power-free DOL system may exist
(see [4]). In the case of four letter alphabets and RT(n)<3 we disprove this
assumption for uniformly growing homomorphisms. So there is no hope to deter-
mine the value of RT(4) easily.
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Lemma. Let ¥ ={a, b, c,d} and w e FREEs(=k) with k <3.
(i) If the letter a does not occur in w, then |w|<4.
(ii) If the string ab does not occur in w as a substring, then |w|<22.

Proof. The longest string satisfying (i) is, e.g. bcdb, which proves (i). All strings in
FREE;(=k), which do not contain ab as a substring and begin with ac are shown
in Fig. 1. By the symmetry of ¢ and d, a similar set of strings is obtained for the
prefix ad. All strings so obtained are no longer than 22, so that (i) implies |w|=26
for all strings satisfying (ii). In fact if w satisfies (ii) and begins with b, ¢, or d, then
lwl=<22. O

a
d7 R a
\b_/a_d_c\b—d—a—c-d—b—c—a*d——c—bﬁa—-c—d<b

a

- —_d—

\i:—a—d—z:—-b/a £

) a
d—a-—c_d—b—a—duc(b

Fig. 1.

Notice that the particular strings a and ab are avoided in the strings of the above
lemma, whereas substrings such as b or ba or bc may occur. Thus the notion of
avoidable used here is more restrictive than the one in [1]. It coincides with Thue’s
notion of avoiding aca and bcb in square-free strings over {a, b, c}. See [9,.Satz 4
and Satz 10].

Theorem 14. If RT(4) <3, then there exists no uniformly growing w_eakly RT(4)th
Power-free homomorphism h on a four letter alphabet such that h'(w) is weakly
RT(4)th power-free for all i =1 and some axiom w.

Proof. Let 3 ={a, b, ¢, d} and consider i =1 such that |’ (a)|=23. By the previous
Lemma, h'(a) contains all substrings pq with p,qe3. Hence h(pg)e
FREE, (<RT(4)) for all letters p, q with p # q. Since FREEz(<RT(4)) is finite there
is an upper bound K on the length of its strings. Thus for all i >K/|h(a ), h'(a) is
in FREE (=RT(4)), and if |i'(a)|> K +2, then h'(a) = uxyxv with u, v # A, and xyx
is the exact RT(4)th power of xy. Since h is growing appropriate i’s exist.
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If h is weakly RT (4)th power-free on its images h'(w), then u and y end with
different letters and the last letters of the homomorphic images of these letters are
different. Otherwise, uxyxv resp. h(uxyxv) is not weakly RT (4)th power-free. By
symmetry v and y begin with different letters and the homomorphic images of
these letters begin with different letters. We now try to fix the homomorphism A,
and for our convenience we assume y = ay’, v =bv’, h(a)=aa and h(b) = bp. Since
h(ca), h(ch), h(da) and h(db) are weakly RT (4)th power-free we obtain that
h(c)=+vc and h(d)=6d or h(c)=~yd and h(d)=&c. Simply assume the first case.
Then we can determine the second letters of the homomorphic images and obtain
h(a)=aba', h(b)=baB’, h(c)=vy'dc and h(d)=38"cd, where a', B', ', 8'#A.
Continuing in this way & (a) may begin with abc or abd, but h(ab) forces |h(a)| = 4.
However, there is no possibility left for the forth letter of h(a) such that both h(ca)
and h(da) are weakly RT (4)th power-free. Hence, h does not exist. [

Concluding we have not been able to determine the values of RT'(n) for n =4,
since new techniques are necessary for that purpose. Further open problems are
the decidability of the (weakly) kth power-freeness of homomorphisms for non-
integral rationals k, and optimal conditions for a kth power-freeness check of
homomorphisms.
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